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Abstract

Photoplethysmography (PPG) is a non-invasive tech-
nique widely used in health monitoring, yet its reliabil-
ity is often compromised by noise and motion artifacts.
This study presents the Peakwise Correlation Pulse Detec-
tor (PCPD), a novel algorithm for accurate, stand-alone
heartbeat detection in PPG signals without relying on ex-
ternal references. PCPD integrates signal segmentation,
cross-correlation with ideal waveform templates, a Mini-
mum Correlation Curve (MCC) for refined peak localiza-
tion, and a machine learning classifier to validate detected
peaks. The algorithm was evaluated in two controlled sce-
narios: a clean signal condition using high-quality PPG
segments selected by expert annotation from a custom 24-
hour dataset and the BIDMC database; and a noisy sig-
nal condition, where synthetic pulse-free segments were
added to simulate motion artifacts and assess specificity.
PCPD achieved high precision, recall, and F1 scores, ex-
ceeding 99.3% accuracy on the custom dataset and 97.1%
on BIDMC under noisy conditions. Comparative analysis
against eleven benchmark algorithms demonstrated that
PCPD outperforms all competitors in noisy environments
while maintaining comparable accuracy in clean settings.
Its robustness stems from the integration of morphological
analysis and physiological constraints, enabling reliable,
self-contained peak detection.

1. Introduction

Photoplethysmography (PPG) is a widely used, non-
invasive technique for cardiovascular monitoring in wear-
able devices. PPG waveforms typically display a promi-
nent systolic peak followed by a lower-amplitude dias-
tolic peak. However, their reliability is frequently compro-
mised by motion artifacts (MAs), which distort the signal

and hinder accurate physiological interpretation. These is-
sues are especially pronounced under low perfusion condi-
tions, where weakened pulse waves and reduced systolic-
diastolic separation further degrade signal clarity [1].

MAs are a leading cause of false alarms in both clinical
and home-based monitoring. They account for 70–71% of
false-positive alerts in pulse oximetry and up to 85% in
apnea monitoring systems [2]. In addition to motion, other
factors such as skin tone, sensor placement, and ambient
lighting can significantly affect signal quality, posing chal-
lenges for the development of reliable automated analysis
algorithms [3].

Accurate heartbeat detection from PPG signals with-
out reliance on external references, such as electrocardiog-
raphy (ECG), is essential for enabling fully autonomous
wearable systems [4]. Many peak detection algorithms
have been proposed, often incorporating auxiliary signals
like synchronized ECG or accelerometer data to enhance
performance [5]. However, this dependence on external
references limits the standalone utility of PPG.

Benchmarking studies have shown that algorithm per-
formance varies by context: some detectors perform well
under stationary conditions, while others are more robust
to motion [6]. A key limitation of many evaluations is the
reliance on ECG as the reference, which can penalize PPG-
based algorithms for missing ECG-labeled peaks that are
not visible in the PPG waveform.

To address these limitations, this paper introduces the
Peakwise Correlation Pulse Detector (PCPD), a novel al-
gorithm designed for standalone heartbeat detection in
PPG signals. PCPD is engineered to be resilient to noise
and motion artifacts by leveraging morphological analy-
sis and physiological constraints to enhance peak detection
accuracy. The approach aims to improve the reliability and
autonomy of PPG-based health monitoring systems across
both clinical and real-world settings.
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2. Materials and Methods

To evaluate the performance of the proposed PCPD al-
gorithm, two experimental conditions were established: a
high-quality signal setting and a noisy signal setting with
artificially introduced noise.

In the high-quality condition, two datasets were used.
The first was a custom dataset developed for this study,
consisting of 12 hours of high-quality PPG segments ex-
tracted from 24-hour recordings of 50 patients. The partic-
ipants had an average age of 54 years; 80% had hyperten-
sion, 60% were overweight or obese, 60% were women,
and 50% reported regular physical activity. Signals were
acquired using the Polar Verity Sense device (Polar Electro
Oy, Finland) at a sampling rate of 55 Hz. A total of 8,640
10-second segments [7] were graded by three experts us-
ing a four-level quality scale: 21.75% showed no visible
peaks, 12.26% had fewer than 50% visible peaks, 14.35%
had more than 50%, and 51.64% had fully visible peaks.
Only grade 4 segments were selected for the high-quality
evaluation to ensure clean PPG morphology.

The second dataset was the publicly available BIDMC
dataset [8], part of the MIMIC II Matched Waveform
Database. It included 53 recordings from critically ill pa-
tients, with ECG and PPG signals sampled at 125 Hz.
All signals underwent preprocessing using a Butterworth
band-pass filter (0.5–8 Hz), following standard practices
in PPG signal processing [9].

For the noisy signal setting, artificial noise was in-
troduced into high-quality segments from both datasets.
This setup was used to assess the PCPD’s specificity
in distinguishing valid pulse waves from pulse-free sub-
segments [10]. The resulting dataset included 4,462 seg-
ments from the custom dataset and 2,544 from BIDMC.
Noisy sub-segments of varying duration (mean: 2.5 s, SD:
0.75 s, range: 0.5–4 s) were generated using zero-mean,
unit-variance Gaussian noise. Each was scaled relative
to the segment’s standard deviation and filtered between
0.5–8 Hz [9]. This approach introduced diverse signal
degradation scenarios and prevented overrepresentation of
false peaks. Figure 1 illustrates a segment containing both
high-quality and artificially corrupted sub-segments.

Unlike prior approaches that rely on ECG data [11], the
evaluation here was conducted entirely using PPG data.
Although ECG is frequently used for benchmarking, it can
be misleading, as it may mark peaks that are not observable
in the PPG. To create a robust validation framework, true
positives (TPs) in both datasets were defined as peaks iden-
tified by a standard peak detector and manually verified in
clean segments. True negatives (TNs) were obtained from
noisy segments by detecting all local maxima. The final
evaluation set, combining clean and noisy data, comprised
139,953 total peaks, with 47% labeled as TPs and 53% as
TNs, thus ensuring a balanced classification benchmark.
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Figure 1: Example of a PPG signal segment containing
a high-quality informative portion and a manually added
pulse-free noisy sub-segment (highlighted in red).

The PCPD algorithm consists of five key stages. First,
the PPG signal is segmented into overlapping 10-second
windows with a 1-second shift to ensure that edge-adjacent
peaks are captured, accommodating heart rates ranging
from 40 to 220 bpm [12].

In the second stage, cross-correlation is performed be-
tween each segment and a set of precomputed ideal beat
templates. These templates were generated from 50 man-
ually selected, high-quality signal segments. For each, the
average waveform of all detected beats was computed. The
mean duration of these ideal beats was 854 ± 127 ms, cor-
responding to heart rates of 61–83 bpm, reflecting plau-
sible resting conditions. Pearson’s correlation coefficient
was calculated at each time point across templates. To im-
prove computational efficiency, the template set was re-
duced from 50 to 16 with negligible loss in performance.

The third stage involves computing the Minimum Cor-
relation Curve (MCC), defined as the pointwise minimum
across all template correlations. The MCC provides a
smoothed, symmetric similarity representation that facil-
itates robust peak localization.

In the fourth stage, machine learning-based validation is
applied. A quadratic linear discriminant classifier, trained
on seven hours of labeled PPG data, is used to validate de-
tected peaks. The classifier employs two features: wave-
form skewness and the Ratio of Area (RoA), which quan-
tifies the compactness of the peak relative to its baseline.
Five-fold cross-validation yielded a classification accuracy
of 97.2%. Figure 2 illustrates the MCC and peak validation
process.

In the final stage, validated peaks are realigned to the
original PPG waveform using a 180 ms tolerance win-
dow to correct for time shifts caused by noise or wave-
form distortion. Physiological constraints are enforced to
remove implausible detections, such as heart rates out-
side the 40–220 bpm range or highly asymmetric wave-
forms [12]. The complete PCPD pipeline—comprising
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Figure 2: PPG segment overlaid with the Minimum Corre-
lation Curve (MCC), showing the peak validation process.

Table 1: Performance of PCPD on clean and noisy
datasets.

Dataset Acc. Prec. Rec. F1
Custom (Clean) 99.13 99.90 98.37 99.12
BIDMC (Clean) 97.04 95.97 98.11 96.92
Custom + Noise 99.30 99.30 99.03 99.17
BIDMC + Noise 97.16 96.82 97.31 97.06

segmentation, cross-correlation, MCC extraction, machine
learning classification, and physiological constraint valida-
tion—is illustrated in Figure 3. This architecture supports
robust systolic peak detection across both clean and noise-
corrupted PPG signals.

2.1. Statistical Performance Metrics

To evaluate PCPD performance, standard classification
metrics were computed. For datasets with noisy signals,
the number of true positives (TP), false negatives (FN),
false positives (FP), and true negatives (TN) enabled cal-
culation of accuracy, precision, recall, and F1 score. In
the clean datasets, where true negatives do not apply, only
TP, FP, and FN were used. Accuracy was defined as the
average of precision and recall in these cases.

3. Results

The proposed PCPD algorithm was evaluated on a co-
hort of 103 subjects using the two previously described
datasets, encompassing approximately 140,000 peaks, in-
cluding both true systolic peaks and noise-induced max-
ima. Table 1 summarizes the performance across clean and
noisy conditions, demonstrating the algorithm’s effective-
ness in detecting true peaks while minimizing false detec-
tions.
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Figure 3: Overview of the PCPD algorithm pipeline.

In clean signal conditions, PCPD achieved an accu-
racy of 99.13% on the custom dataset and 97.04% on the
BIDMC dataset. Under noisy conditions, performance re-
mained strong, with accuracies of 99.30% and 97.16% on
the custom and BIDMC datasets, respectively. These re-
sults confirm that PCPD consistently maintains high accu-
racy across both clean and noise-degraded environments.

4. Discussion

In a comparative evaluation against eleven established
beat detection algorithms [11], including AMPD [6],
MSPTD [13], and ERMA [14], the proposed PCPD
method demonstrated consistently high accuracy across
both clean and noisy datasets. Figure 4 summarizes the
comparative results, showing that PCPD outperformed all
competing methods, particularly under noise-augmented
conditions.

Among the competing algorithms, MSPTD and AMPD
exhibited relatively strong performance due to their multi-
scale detection frameworks. However, both exhibited more
pronounced accuracy degradation in the presence of noise
compared to PCPD.

The superior noise robustness of PCPD is attributed to
its integration of morphological analysis, the design of
the Minimum Correlation Curve (MCC), and the use of a
classifier-based peak validation strategy. Even under clean
conditions, where most algorithms performed well, PCPD
retained a slight advantage in both accuracy and F1 score,
demonstrating not only resilience in challenging condi-
tions but also high precision in ideal signal environments.

5. Conclusions

The Peakwise Correlation Pulse Detector is a robust and
accurate algorithm for heartbeat detection in PPG signals.
Its five-stage processing pipeline—comprising segmenta-
tion, cross-correlation with ideal templates, MCC extrac-
tion, machine learning-based classification, and physio-
logical constraint enforcement—enables reliable peak de-
tection even in the presence of noise and signal vari-
ability. PCPD achieved high accuracy across both clean
and noisy datasets, consistently outperforming established
benchmark methods. Its standalone design and resilience
to ambient artifacts make it well-suited for real-world de-
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Figure 4: Comparative analysis of eleven beat detection
methods and the proposed PCPD function.

ployment in wearable health monitoring systems, support-
ing both heartbeat detection and signal quality assessment.
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